
Jet Propulsion Laboratory
California Institute of Technology

(2) B&A Engineering Inc.
(3) Alpha Data Inc.

Real-time Airborne
Demonstration of Fast

Lossless Hyperspectral Data
Compression System for

AVIRIS-NG and PRISM

Didier Keymeulen, Huy Luong, Nazeeh Aranki, Charles Sarture, Michael Eastwood, Ian Mccubbin,
Alan Mazer, Matt Klimesh, Robert Green, David Dolman (3), Alireza Bakhshi (2)

2!

•  Overview of Fast Lossless (FL) Hyperspectral

Data Compression Algorithm

•  Fast Lossless FPGA Implementation

•  Airborne Demonstrations

Outline

3!

Fast Lossless (FL) MSI/HSI Compressor

previous
three
bands

current
spectral

band current
sample

3D neighborhood used
for prediction.

Approach: Predictive compression, encoding samples one-at-a-time

•  Predictor

–  Computes predicted sample value from previously encoded
nearby samples (prediction neighborhood illustrated at right)

–  Adaptively adjusts prediction weights for each spectral band via
adaptive linear prediction

•  Entropy Coder

–  Losslessly encodes the difference between predicted and
actual sample values

–  Adaptively adjusts to changing prediction accuracy

Predictor Entropy
Coder

MSI/HSI image

predicted
sample
values compressed

data

FL Compressor Overview

Cross-track 2

Band1

Direction of flight 3

4!

•  Purpose: Estimate a desired signal from an input vector using a linear estimator that
is adaptively updated from previous results

•  Compression of Estimate Error :
•  Form estimate:
•  Calculate estimation error:

 is encoded in the compressed bitstream
•  Update filter weights using the sign algorithm:

where µ is the “adaptation step size” parameter
•  Naive approach: use local neighborhood to construct around

with and

But performs poorly ….

previous
three
bands

current
band current

sample

3D neighborhood used
for prediction.

Compression Algorithm: Estimation

td tu
r

ˆ T
t t td w u=

r r
ˆ

t t te d d= −
te

1 sgn()t t t tw w u eµ+ = −
r r r

0td s= tu =
r

0 19

The samples are
labelled S , ,SK

tu
r

0td s=

Cross-track

Band

Direction of flight

5!

•  Our solution: compute simple preliminary estimates in each band at the
spatial location of the sample being predicted, and subtract from the input
samples.

previous
three
bands

current
band current

sample

3D neighborhood used
for prediction.

Compression Algorithm: Local Mean Subtraction

is%

tu
r

0 0td s s= −%

ˆ T
t t td w u=

r r
t̂t tde d= −to compute the estimate and the estimate error Cross-track

Band

Direction
of flight

6!

• Sign algorithm is used for weight adaptation
• Estimation error is encoded using Golomb power-of-2 codes
• Dataset is divided into parts (32 lines each), which are
compressed independently. This provides some error
containment.

• Each spectral band has its own prediction weights,
maintained independently of the prediction weights for other
spectral bands

Compression Algorithm: Implementation

7!

Compare our “Fast lossless” compression algorithm with:
• ICER-3D: a 3-D-wavelet-based compressor which is the
state-of-the-art (ICER-2D is used on both spirit and
opportunity MER rovers)

• Rice/USES (GSFC): algorithm used in USES chip, with the
multispectral predictor option.

• JPEG-LS: is most efficient for 2D and is applied to the
spectral bands independently

Other Methods:
•  Differential JPEG-LS: JPEG-LS applied to the differences between the successive spectral bands
•  SLSQ and SLSQ-OPT: two versions of Spectral-oriented Least Squares (SLSQ) [Rizzo et al., 2005].

Algorithms with complexity roughly similar to that of ours.
•  3-D CALIC: a nontrivial extension of the basic (2-D) CALIC algorithm to multispectral imagery. More

complex.
•  M-CALIC: multiband CALIC, another extension of CALIC to multispectral imagery. More complex.
•  ASAP: Adaptive Selection of Adaptive Predictors [Aiazzi et al., 2001]; more computationally intensive than

any of the other compressors in the tables

Compression Algorithm: Other Methods

8!

AVIRIS data sets represent different scenes

Comparison using Aviris Data Sets Test Bed

Moffett Field
(vegetation,
urban, water)

Cuprite
(geological

features)

Jasper Ridge
(vegetation)

Low Altitude
(high spatial
resolution)

Lunar Lake
(calibration)

9!

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

data set index

ra
te

 (b
its

/s
am

pl
e)

Tests using 19 uncalibrated AVIRIS data sets:
•  original sample size: 12 bits/sample
•  data size: (614 × 512) pixels × 224 bands

Methods:
JPEG-LS: is most efficient for 2D; GSFC/USES use chip; ICER-3D SOA (ICER-2D MER rovers)

Compressor rate (bits/
sample)

JPEG-LS (2D) 4.73

GSFC/USES
Multispectral 3.89

ICER-3D 3.23

Fast Lossless 2.81

Compression performance averaged
over 19 uncalibrated AVIRIS
hyperspectral test data sets.

JPEG-LS
(LOCO) (2D)!

GSFC/USES (3D)!

ICER-3D!

Fast Lossless!

About 40% lower bit
rate than state-of-the-
art 2D approach
(GSFC/USES).

Comparison for raw AVIRIS Data

Compression Gain

bi
ts

 /
sa

m
pl

e

10!

• Performance: outstanding compression effectiveness

• Robust; requires no training data or other specific information about the
nature of the spectral bands for a fixed instrument dynamic range

• Simple: well-suited for implementation on FPGA hardware and easily
parallelizable

•  Low computational complexity. required operations per sample are:

–  6 integer multiplications

–  25 integer addition, subtraction, or bit shift operations

–  Golomb coding operations

• Modest memory requirement: enough to hold one spatial-spectral slice
of the data (e.g., ≤650 Kbytes for AVIRISng data with 481 bands and 640
samples/line)

•  Instrument: well-suited to push broom instruments

Compression Algorithm Features

11!

JPL Lossless Data Compression is a CCSDS Standard

The Consultative Committee for Space
Data Systems (CCSDS) Multispectral &
Hyperspectral Data Compression working
group has adopted the FL compressor as
international standard CCSDS-123.0-B-1

FL verification software has demonstrated
outstanding performance on all of the
myriad airborne and spaceborne imagers
represented in the CCSDS test data set:
•  Hyperspectral imagers:

AVIRIS, Hyperion, SFSI, CASI,
M3, CRISM

•  Ultraspectral sounders:
AIRS, IASI

•  Multispectral imagers:
MODIS, MSG, PLEIADES,
VEGETATION, SPOT5

12!

High Speed FL Implementations: CPU/GPU

•  FL is well-suited for high-speed parallel implementations:
–  GPU: 7× speed-up – A GPU hardware implementation targeting the current

state-of-the-art GPUs from NVIDIA®: mobile version GTX560M and desktop
version GTX580

–  OpenMP: 3× speed-up – A 12-core implementation targeting the mobile Intel®
quad-core i7™ processor and the desktop Intel® hexa-core Xeon™ processor

•  Example: uncalibrated AVIRIS hyperspectral image (137MBytes)

–  Compression time: 11.38 sec on single-core CPU, 3.68 sec on 12-core CPU,
and 1.57 sec on GPU

Speedup Time	
 (s) Speed	

(Mbit/s)

Speed	

(MSamp/s)

GPU	
 GeForce	
 GTX	
 580 725% 1.57 583.08 44.85

GPU	
 GeForce	
 GTX	
 560M 596% 1.91 479.29 36.87

GPU	
 Tesla	
 C2070 486% 2.34 391.21 30.09

Dual	
 Hex	
 Core	
 (12	
 cores) 309% 3.68 248.76 19.14

Dual	
 Hex	
 Core	
 (8	
 cores) 272% 4.19 218.48 16.81

Dual	
 Hex	
 Core	
 (4	
 cores) 259% 4.39 208.53 16.04

Quad	
 Core	
 (4	
 cores) 196% 6.87 133.25 10.25

Dual	
 Hex	
 Core	
 (1	
 core) 115% 9.9 92.47 7.11

Quad	
 Core	
 (1	
 core) 100% 11.38 80.44 6.19

Data Rate:
AVRISng (481*640 pixels per frames @100 frames/sec): 500Mbit/s
Future (481*1600 pixels per frames @100 frames/sec): 1300 Mbit/s
FPGA FL: 640 Mbit/s

13!

High Speed FL Implementations: CPU/GPU

•  Redesigned data path implementation: Parallel computation across multiple 32
frames of the full image

•  Total speed-up for Version 2
–  GPU: 56× speed-up– 137MB AVIRIS image compression time: 204 ms (vs.

11.38 sec)
–  12-core CPU: 20× speed-up– 137MB AVIRIS image compression time: 569 ms

(vs. 11.38 sec)
•  True real-time performance (2×-5× real-time target of 800Mb/s or 50MSamples/sec)

BUT require 100 Watt

Version 2: Even faster with re-designed data path
Version

Time
(ms)

Throughput
 (Mb/s)

Throughput
(MSamp/s)

Speedup
vs. V1

OMP - v1 - 8 core 4488 194.53 14.96 1.00

OMP - v4 – 12 core 569 1534.68 118.05 7.89

CUDA - v1 1910 457.08 35.16 1.00

CUDA - v4 - 1 GPU 226 3862.97 297.15 8.45

CUDA - v4 - 2 GPU 204 4279.56 329.20 9.36

Decompress (serial) 3585 243.53 18.73 1.00

Decompress (parallel) 857 1018.16 78.32 4.18

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00
Throughput
(Mb/s)

Data Rate:
AVRISng (481*640 pixels per frames @100 frames/sec): 500Mbit/s
Future (481*1600 pixels per frames @100 frames/sec): 1300 Mbit/s
FPGA FL: 640 Mbit/s

14!

FL FPGA: ARTEMIS & AVIRIS-NG
FL FPGA Compression IPs for whiskbroom and pushbroom imagers

•  Xilinx Virtex-4 Lab Demonstration for ARTEMIS

•  Implemented on Xilinx Virtex4 ML401 prototype board.
•  17 MB image data (32 frames) uploaded serially to 256 DDR SDRAM prior to

compression

•  Xilinx Virtex-5 Real-Time Airborne Onboard Compression
•  Implemented pushbroom compressor on COTS Virtex 5 (equivalent to V5 Rad-hard

device). Compresses one sample every clock cycle, a speed of 40 MSample/sec
•  Implementation tested in National Instruments PXI environment which includes a

PXIe-7962R board with Xilinx Virtex-5 SX50T and two 256MBytes DRAMs. The
system is connected to the airborne AVIRIS-NG HSI instrument and provides real-time
onboard compression

ML401 Board NI PXIe-7962R Twin Otter hosting AVIRIS-NG

14

15!15

FL FPGA: PRISM & AVIRISng

FMC-CLINK-MINI

Real-time aircraft onboard compression
•  Implemented pushbroom FL compressor on a COTS

Virtex 6. Compresses one sample every clock cycle, a
speed of 40 MSample/sec.

•  Implementation tested via Alpha-Data ADPE-XRC-6T
which includes

–  Xilinx Virtex-6 LX240T
–  two 256MBytes DRAMs (32bits data word, 3.2GBytes/sec

per bank)
–  PCIe x4 Gen2 (500MBytes/sec per lane).

•  PRISM and AVIRISng HSI image data transferred in
real-time (60MBytes/sec) to the Virtex-6 via Alpha-Data
FMC-CLINK-MINI camera link board, compressed on
the Virtex-6 and transferred through PCIe to a 1GBytes
SSD drive configured as RAID0 (500MBytes/sec)

ADPE-XRC-6T/LX240T-3

PRISM HSI PRISM HSI Support Equipment

16!

FL FPGA IP Main Block Diagram

LOSSLESS COMPRESSION
ALGORITHM

CURRENT Z
DOUBLE
BUFFER
(Zx1x2)

 FPGA

UNCOMPRESSED
DATA IN

EXTERNAL RAM

THREE UPPER Y AND
PREVIOUS Z

 PIXEL BUFFER(S)
(Zx1X4)

LOCAL
MEAN

DIFFERENCE

CURRENT Z

PREVIOUS y and z ROWS

WEIGHT

MULTIPLIER

DELTA

ESTIMATE

ENCODE PACKER
LOSSLESS

COMPRESSED
DATA

17!

Camera	
 Link	
 interface Camera	
 Link	
 Interface	

	

	

Custom App (JPL)

Resync	

Pass	

through	

Camera	
 Link	
 &	

OCP	
 interface

PCIe Interface
&

Target Wrap

OCP	
 Interface	
 	

Mux	
 SDRAM	
 #1	

	
 FL	
 	

Compression

	

Control	
 &	
 	

Status

	

Hyper-­‐	

spectral
source

Hyper-­‐	

spectral
sink

	
 	
 BIL	
 to	
 BIP	
 Formatting	

OCP	
 Interface	
 	

Mux	
 SDRAM	
 #2	

	
 DDR	
 bank#2	
 SDRAM	
 512MBytes	
 32bits;	

3.2GB/sec	

	
 DDR	
 bank	
 #1	
 SDRAM	
 512MBytes	
 	

32bits;	
 3.2	
 GB/sec	

FL FPGA Architecture

Xeon
CPU PCIe

Gen2
X4
0.5GB/s

SSD
1 TB

0.5GB/s
(raw

Compr-
essed)

Alpha-data FMC-CLINK
CameraLink
640by285,165Hz,60MB/s
BIL; 16 bits/sample

Virtex6-LX240T-3

Alpha-Data ADPE-XRC-6T

IMU/GPS

Host

RAM

acquisition

transpose

Compression

DMA Bank#1 transfer

DMA Bank#2 transfer

Drivers

Software

18!

FL FPGA Resource Utilization – Virtex6

Available Used Utilization
All

Utilization
Compressor

Utilization Virtex5
Compressor (estimate)

Slice Register (Flip-Flop) 301,440 37,284 12% 4% 8%

Slice Look-up-table (LUTs) 150,720 37,374 24% 8% 8%

Fully used LUT-Flip Flop pairs 50,693 19,105 38% 13% 26%

Block RAM/FIFO 416 108 25% 12% 12%

DSP 48eS 768 6 1% 1% 1%

Device Utilization Virtex6-LX240T-3 (Compressor and Interface)

Device Utilization SDRAM (AVIRISng)
Available Used Utilization

SDRAM Bank#1 (2 segments) 256 MBytes 40 MBytes 20 %

SDRAM Bank#2 (3 segments) 256 MBytes 60 MBytes 24 %

Block Critical Path Timing

Synchronization frames with IMU/GPS <25ns

Transpose BIP to BIL <10ns

Predictor 12.070 ns

Entropy Encoder 10.029 ns

Packer 7.377 ns

Timing: Critical Path

The implementation compresses one sample every clock cycle,
which results in a speed of 40 MSample/sec

19!
Soda Lake Kingsburg Sierra San Joaquin

Comparison during airbone AVIRISng mission (June 2014)

20!

Comparison during airborne AVIRISng mission (June 2014)

3.00

3.25

3.50

3.75

4.00

4.25

Kingsburg,
Agriculture Field

(13,000 ft)

San Joaquin (8,000
ft)

Sierra (17,500 ft) Soda Lake (5,000 ft) Fresno, Agriculture
Field (10,000 ft)

C
om

pr
es

si
on

 R
at

io

Data Sets
original sample size: 14 bits/sample
data size: 640 cross track by 481 bands

Fast Lossless
12bits/sample

Fast Lossless
13bits/sample

21!

Summary
We presented an FPGA implementation of a novel hyperspectral

data compression algorithm and its flight demonstation: JPL
adaptive Fast Lossless compressor.

The implementation targets the Xilinx Virtex FPGAs and provides an
acceleration of at least 7 times the software implementation on a
single core of the Intel® Hex Core™ i7, making the use of this
compressor practical for satellites and planet orbiting missions
with hyperspectral instruments.

Future development will provide multiple implementations and near
lossless data compression for accommodating large Focal Plane
Array (FPA). We will also develop options to deploy various
versions of the algorithm to accommodate data from different
instrument types as well as radiance and reflectance data. And
finally explore new hardware technologies such as System-on-the-
Chip (SoC) to embed the compression next to the FPA ROI and
fast I/O interface to the instrument (e.g. optical).

22!

Back-up

23!

High Speed FL Implementations: CPU/GPU

•  Redesigned data path implementation:
–  Parallel computation across multiple 32 frames of the full image
–  Eliminated data writing to GPU main memory between algorithm stages

•  Achieves further 8× speedup for CUDA + OpenMP Implementations compared to Version 1
•  Total speed-up for Version 2

–  GPU: 56× – 137MB AVIRIS image compression time: 204 ms (vs. 10 sec)
–  12-core CPU: 24× – 137MB AVIRIS image compression time: 569 ms (vs. 10 sec)

•  Parallel Decompressor is 4× faster than serial
•  True real-time performance (2×-5× real-time target of 800Mb/s or 50MSamples/sec)

•  Supports multiple GPU cards

Version 2: Even faster with re-designed data path
Version

Time
(ms)

Throughput
 (Mb/s)

Throughput
(MSamp/s)

Speedup
vs. V1

OMP - v1 - 8 core 4488 194.53 14.96 1.00

OMP - v4 – 8 core 569 1534.68 118.05 7.89

CUDA - v1 1910 457.08 35.16 1.00

CUDA - v4 - 1 GPU 226 3862.97 297.15 8.45

CUDA - v4 - 2 GPU 204 4279.56 329.20 9.36

Decompress (serial) 3585 243.53 18.73 1.00

Decompress (parallel) 857 1018.16 78.32 4.18

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00
Throughput
(Mb/s)

Data Rate:
AVRISng (481*640 pixels per frames @100 frames/sec): 500Mbit/s
Future (481*1600 pixels per frames @100 frames/sec): 1300 Mbit/s
FPGA FL: 640 Mbit/s

24!

Comparison during airborne AVIRISng mission (June 2014)

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

Kingsburg,
Agriculture Field

(13,000 ft)

San Joaquin (8,000
ft)

Sierra (17,500 ft) Soda Lake (5,000 ft) Fresno, Agriculture
Field (10,000 ft)

C
om

pr
es

si
on

 R
at

io

Data Sets
original sample size: 14 bits/sample
data size: 640 cross track by 481 bands
original sample size: 14 bits/sample
data size: 640 cross track by 481 bands

Fast Lossless
12bits/sample

Fast Lossless
13bits/sample

Fast Lossy 13bits/sample (Max Error = 1)

25!

Camera	
 Link	
 interface Camera	
 Link	
 Interface	

	

	

Custom App (JPL)

Resync	

Pass	

through	

Camera	
 Link	
 &	

OCP	
 interface

PCIe Interface
&

Target Wrap

OCP	
 Interface	
 	

Mux	
 SDRAM	
 #1	

	

Fast	
 Lossless	
 	

	
 	
 	
 	
 	
 	
 	
 1	
 pass	

Compression

	

Control	
 &	
 	

Status

	

Hyper	

spectral
source

Hyper	

spectral
sink
	
 	

BIL/BSQ	
 to	

BIP	

Formatting	

OCP	
 Interface	
 	

Mux	
 SDRAM	
 #2	

	
 DDR	
 bank#2	
 SDRAM	
 512MBytes	
 32bits;	

3.2GB/sec	

	
 DDR	
 bank	
 #1	
 SDRAM	
 512MBytes	
 	

32bits;	
 3.2	
 GB/sec	

FL FPGA Architecture

Xeon
CPU PCIe

Gen2
X4
0.5GB/s

SSD
1 TB

0.5GB/s
(raw

Compr-
essed)

Alpha-data FMC-CLINK
CameraLink
640by285,165Hz,60MB/s
BIL; 16bits

Virtex6-LX240T-3

Alpha-Data ADPE-XRC-6T

IMU/GPS

Host

RAM

acquisition

transpose

Compression

DMA Bank#1 transfer

DMA Bank#2 transfer

Drivers

Software

26!

FL FPGA IP Main Block Diagram

LOSSLESS COMPRESSION
ALGORITHM

CURRENT Z
DOUBLE
BUFFER
(Zx1x2)

 FPGA

UNCOMPRESSED
DATA IN

EXTERNAL RAM

THREE UPPER Y AND
PREVIOUS Z

 PIXEL BUFFER(S)
(Zx1X4)

LOCAL
MEAN

DIFFERENCE

CURRENT Z

PREVIOUS y and z ROWS

WEIGHT

MULTIPLIER

DELTA

ESTIMATE

ENCODE PACKER
LOSSLESS

COMPRESSED
DATA

ˆ T
t t td w u=

r r

ˆ
t t te d d= −

T
tw
r

0 5 10 15, , ,s s s s%%% %5 10 15, ,s s s

tu
r

0td s=

0s%
0s

27!

•  Objective: State-of-the-art lossless compression, with low complexity (i.e., fast)
•  Approach: Predictive compression that adapts to the data via the sign algorithm (a

variation of the least mean square (LMS) algorithm) (see boxes below)
•  Compared to Transformed-based compression techniques (such as DCT, Wavelet

transform), this approach:
•  requires fewer arithmetic operations and less memory, simplifies data handling, and is

more straightforward to implement (in software, DSP, or hardware)
•  yields significantly faster lossless compression
•  But provides only lossless (and potentially near-lossless) compression

Predictive Compression
• Encodes samples one-at-a-time,

typically in raster scan order
• Estimates sample value probability

distribution from previously encoded
samples. These estimates are used
to efficiently encode the sample
value.

• The difference between an
estimated sample value in the actual
sample value is encoded in the
compressed bitstream.

The sign algorithm and the LMS
algorithm are members of a
family of low complexity
adaptive linear filtering
techniques.

• Used extensively in signal
processing applications

• Used for compression of
audio data

• Not previously well studied
for image or hyperspectral
data compression

previous
three
bands

current
band current

sample

3D neighborhood used
for prediction.

Fast Lossless Compression Algorithm

28!

FL	
 MSI/HSI	
 Compressor	

State of Development

•  Algorithm
–  Described in published technical papers [1,2,3]
–  International standard for spacecraft onboard compression (next slide)

•  Software
–  High speed parallel CPU multicore and GPU implementations [4]

•  Hardware
–  FPGA lab hardware demonstration @ 33 MSamples/sec [5,6]
–  FPGA airborne demonstration @40 MSamples/sec with PRISM AVIRIS-NG

28	

References:
[1] M. Klimesh, “Low-Complexity Lossless Compression of Hyperspectral Imagery Via Adaptive Filtering,” IPN Progress Report, vol. 42-163, pp.

1–10, November 15, 2005.
[2] M. Klimesh, “Low-Complexity Adaptive Lossless Compression of Hyperspectral Imagery,” (Invited paper), SPIE 2006 Optics & Photonics

Conference, August 13-17, 2006, San Diego, CA; Proc. SPIE, vol. 6300, 9 pages, September 1, 2006.
[3] M. Klimesh, A. Kiely, P. Yeh, “Fast Lossless Compression of Multispectral and Hyperspectral Imagery,” Proc. 2nd Int’l Workshop on Onboard

Payload Data Compression, Toulouse, France, pp. 1–8, Oct. 28–29, 2010.
[4] D. Keymeulen, N. Aranki, B. Hopson, A. Kiely, M. Klimesh, K. Benkrid, “GPU Lossless Hyperspectral Data Compression System for Space

Applications,” IEEE Aerospace Conference, March 3-10, 2012, Big Sky, MT, USA
[5] N. Aranki, D. Keymeulen, M. Klimesh, A. Bakhshi, “Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space

Applications,” 2009 IEEE Aerospace Conference, 8 pages, March 7-14, 2009, Big Sky, MT, USA.
[6] N. Aranki, D. Keymeulen, M. Klimesh, A. Bakhshi, “Hardware Implementation of Lossless Adaptive and Scalable Hyperspectral Data

Compression for Space,” NASA/ESA Conference on Adaptive Hardware and Systems, pp. 315–322, July, 2009, San Francisco, CA, USA.

29!

CCSDS	
 StandardizaAon	
 of	
 FL	

The Consultative Committee for Space Data Systems (CCSDS) Multispectral &
Hyperspectral Data Compression working group has adopted the FL
compressor as international standard CCSDS-123.0-B-1 [7].

•  FL verification software has demonstrated outstanding performance on all of
the myriad airborne and spaceborne imagers represented in the CCSDS test
data set:

–  Hyperspectral imagers:
–  AVIRIS, Hyperion, SFSI, CASI, M3, CRISM

–  Ultraspectral sounders:
–  AIRS, IASI

–  Multispectral imagers:
–  MODIS, MSG, PLEIADES, VEGETATION, SPOT5

29	

Reference:
[7] Lossless Multispectral & Hyperspectral Image Compression. Recommendation for Space Data System Standards, CCSDS 123.0-B-1. Blue

Book. Issue 1. Washington, D.C.: CCSDS, May 2012.

30!

JPL Lossless Data Compression is a CCSDS Standard

31!

FL	
 Parameters	
 &	
 OpAons	

FL Compression Parameters and Options:
•  Prediction modes:

•  “regular”: for calibrated images and whisk-broom imagers
•  “pushbroom”: for raw images from pushbroom imagers (to handle detector artifacts)

•  Number of previous spectral bands used for prediction, P
•  P=3 is typical. Increasing P leads to better but slower compression.

•  Segment height (number of frames per segment)
•  Larger segments provide better compression because compressor has more time to adapt to

image statistics.
•  Smaller segments provide better robustness to data loss and easier “random access” to

portions of the data.
•  Because segments are compressed independently, this provides a simple method of

exploiting parallelism
•  Adaptation parameters

•  Prediction weight adaptation rate (determines how quickly prediction weights adapt to
changing source statistics)

•  Entropy coding adaptation interval (determines how quickly entropy coder adapts to changing
predictor accuracy)

•  Segment initialization
•  Initial prediction weights can be tailored for a specific instrument
•  For raw images, detector offset array can be used to improve compression of initial line of

each segment

•  A	
 good	
 set	
 of	
 “default”	
 parameter	
 se]ngs	
 have	
 been	
 developed	
 in	
 the	
 course	
 of	
 evalua_on	
 on	
 the	
 many	

different	
 test	
 images	
 in	
 the	
 CCSDS	
 test	
 images

 31	

32!

FL FPGA Resource Utilization – Virtex6

32

Available Used Utilization
Slice Register 301,440 38,472 12%

Slice Look-up-table (LUTs) 150,720 48,115 31%

Fully used LUT-Flip Flop pairs 68,547 18,040 26%

Block RAM/FIFO 416 112 26%

DSP 48eS 768 9 1%

Device Utilization Virtex6-LX240T-3 (Compressor and Interface)

Device Utilization SDRAM
Available Used Utilization

SDRAM Bank#1 (2 segments) 256 MBytes 24 MBytes 10 %

SDRAM Bank#2 (3 segments) 256 MBytes 36 MBytes 15 %

Block Critical Path Timing

Synchronization with IMU/GPS

Transpose BIP to BIL

Predictor 12.033 ns

Entropy Encoder 10.029 ns

Packer 7.377 ns

Timing: Critical Path

33!

FL Data Compression FPGA 2014 Flight Test of on PRISM and AVIRISng

34!

Comparison for raw PRISM Data (13 bits sample)

2.50

2.60

2.70

2.80

2.90

3.00

3.10

3.20

3.30

3.40

Grand Junction Airport
(15,000 ft)

Sea (15,000 ft) LAX (5,000 ft) Burbank (5,000 ft) Sacramento Delta Suisun
Marsh (10,000 ft)

C
om

pr
es

si
on

 R
at

io

Data Sets

Lossless FPGA (average: 3.03)

Lossless SW (Average: 3.06): Predictor with
Statistics and Interleave Entropy Encoder (GPO2
and IEC)

original sample size: 14 bits/sample
data size: 640 cross track by 285 bands

35!

Comparison for raw AVIRIS Data (13 bits sample)

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

Kingsburg, Agriculture
Field (13,000 ft)

San Joaquin (8,000 ft) Sierra (17,500 ft) Soda Lake (5,000 ft) Fresno, Agriculture Field
(10,000 ft)

C
om

pr
es

si
on

 R
at

io

Data Sets

Lossless FPGA (average: 3.24)

Lossless SW (Average 3.26): Predictor with
Statistics and Interleave Entropy Encoder
(GPO2 and IEC)

Near Lossless SW (Average 5): Predictor with
Maximum Error of Sample Data Number = 1

original sample size: 14 bits/sample
data size: 640 cross track by 481 bands

36!

Comparison for raw PRISM Data

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Grand Junction Airport
(15,000 ft)

Sea (15,000 ft) LAX (5,000 ft) Burbank (5,000 ft) Sacramento Delta Suisun
Marsh (10,000 ft)

C
om

pr
es

si
on

 R
at

io

Data Sets

Lossless FPGA (average: 3.03)

Lossless SW (Average: 3.06): Predictor with
Statistics and Interleave Entropy Encoder
(GPO2 and IEC)

Near Lossless SW (average: 4.59) :
Predictor with Maximum Error of Sample
Data Number = 1

original sample size: 14 bits/sample
data size: 640 cross track by 285 bands

37!

Hardware Performance Summary

Critical Path Delay: 24.29ns (41Mhz)
Total power: 702.20 mW
The implementation compresses one sample every clock cycle,

which results in a speed of 40 MSample/sec

VIRTEX-5 SX50T Timing & Power

VIRTEX-5 SX50T Device Utilization Summary

Resource Available VIRTEX-5 SX50T VIRTEX-5QV FX130

Slice Registers 32,640 122,880

Slice LUTs 32,640 122,880

Block RAM/FIFO 132 456

DSP48E 288 384

Logic Utilization Used Available Utilization
Slice Registers 1586 32640 4%

Slices LUTs 12697 32640 38%
Block RAM/FIFO 8 132 6%

DSP4BEs 3 288 1%

VIRTEX-5 SX50T and Space-qualified Rad Hard VIRTEX-5QVFX130

38!

Hyperspectral Imager (AVIRIS)
•  Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is a multispectral

imagers with the same detector element for all samples in a given spectral band (“whisk
broom”-type instrument).

•  Spectral Resolution: AVIRIS has 224 detectors (channels) in the spectral
dimension, extending over a range of 380nm to 2500 nm.

•  Spatial resolution: A typical mission, mounting AVIRIS on a NASA aircraft (ER-2),
produces a spatial resolution of about 20 meters, but can improve that to five meters
by flying at lower altitudes

Trend In Sensors

Source: Multispectral
Imagery Guide, Logicon

39!

•  Hyperspectral images are three-dimensional data sets, where two of the dimensions
are spatial and the third is spectral.

•  A hyperspectral image can be regarded as a stack of individual images of the same
spatial scene, with each such image representing the scene viewed in a narrow
portion of the electromagnetic spectrum, referred to as spectral bands.

•  Hyperspectral images typically consist of hundreds of spectral bands;
 The voluminous amount of data comprising hyperspectral images
 (up to 645GB) makes them appealing candidates for data compression.

Hyperspectral Images

AVIRIS hyperspectral data “cubes”

Pearl Harbor, Hawaii WTC Disaster Site

40!

•  Objective: State-of-the-art lossless compression, with low complexity (i.e., fast)
•  Approach: Predictive compression that adapts to the data via the sign algorithm (a

variation of the least mean square (LMS) algorithm) (see boxes below)
•  Compared to Transformed-based compression techniques (such as DCT, Wavelet

transform), this approach:
•  requires fewer arithmetic operations and less memory, simplifies data handling, and is

more straightforward to implement (in software, DSP, or hardware)
•  yields significantly faster lossless compression
•  But provides only lossless (and potentially near-lossless) compression

Predictive Compression
• Encodes samples one-at-a-time,

typically in raster scan order
• Estimates sample value probability

distribution from previously encoded
samples. These estimates are used
to efficiently encode the sample
value.

• The difference between an
estimated sample value in the actual
sample value is encoded in the
compressed bitstream.

The sign algorithm and the LMS
algorithm are members of a
family of low complexity
adaptive linear filtering
techniques.

• Used extensively in signal
processing applications

• Used for compression of
audio data

• Not previously well studied
for image or hyperspectral
data compression

previous
three
bands

current
band current

sample

3D neighborhood used
for prediction.

Fast Lossless Compression Algorithm

41!

FLEX FPGA IPs Development

41

Capabilities:
•  Consistency between FLEX software and FPGA compressors

•  Handles BIP, BIL and BSQ input formats

•  Floating point data handled by rounding to integers (Phase 1 FLEX) and/or new methods developed during
Phase 2 effort (Algorithms Subtask 2.3)

IP Sub-Modules:
•  Compute image statistics: new design

•  Format BIL/BSQ to BIP: design to be modified from FL FPGA; native format for compression IP is BIP

•  Predictor: design to be modified from FL FPGA

•  Quantizer: new design

•  Hybrid Entropy Coder: new design, will include GPO2
encoder developed for FL FPGA

•  Packer with segment markers: design to be modified from FL
FPGA

•  Erasure Correction Encoder: new design

42!

Software Driver for FPGA Implementation
Software Driver Tasks
•  Interpret command-line parameters
•  Acquire image parameters

–  E.g., in the case of an image saved in ENVI format, parse the ENVI header file to extract the image parameters
•  Send compression parameters (including user-selected values and image parameters) to FPGA

•  Generate text header for compressed file (e.g., file identifier text plus verbatim ENVI header) and send it to the FPGA board
–  FPGA needs this header because it is protected with parity words

–  Assumption: parity words must be generated on FPGA
•  Read image file (from SSD) and send raw image data to FPGA board

•  Receive compressed image data from FPGA board and write file to SSD

Notes
•  Software driver memory requirement may be significantly smaller than image file size

–  Possible to read image data and send it to FPGA in chunks (large, but much smaller than whole image)

–  Similarly, compressed data can be received from FPGA and written to file in chunks
•  Software drivers will use the alpha-data drivers which allow:

–  DMA from Host to FPGA board SDRAM (raw image)
–  DMA from FPGA board SDRAM to Host (compressed image)
–  Read/Write internal FPGA registers

–  Interrupt Handler to initiate DMA transfer independently of data processing on the FPGA board

42

43!

FPGA Implementation Trade-Offs

•  Large on-board SDRAM memory is required (min 2 Gbytes)
–  Needed to support 2-pass compression approach, in which the first pass computes statistics

over the whole image.

Alternative approach: Compress image in chunks, which will reduce SDRAM memory
needed. This would lead to some variations in quality between chunks when compression is
done to a compression ratio target.

•  Serial implementation may not meet RDUCE latency objective
–  However, level of pipelining is still to be determined for the FPGA implementation

components such as reading image file through DMA, computing statistics, data
formatting, compression, and writing compressed data back through DMA.

Alternative approach: Parallel implementation at segment level; this would require more
resources and power.

•  Handling BSQ data format may introduce a latency of approximately 2 seconds
–  Due to the nature of BSQ images, formatting to BIP may require reading full image into

local board SDRAM prior to starting formatting operation.

Alternative approach: Eliminate the capability to handle BSQ input

•  Innovative algorithmic enhancements may have to be abandoned if they cannot be
implemented in hardware on schedule

Alternative approach: Delay HW delivery schedule by 6 months (to month 24 from start) to
allow migration of such enhancements to HW.

43

44!

Need few Slides with
Hardware Implementation

Performance

45!

High Speed FL Implementations: FPGA

45

Hardware Performance Summary

Virtex-5 SX50T

Available Used Utilization

Slice Register 32,640 1,586 4%

Slice Look-up-table 32,640 12,697 38%

Fully used LUT-FF
pairs

13,385 898 6%

Block RAM/FIFO 132 8 6%

BUFG/BUFGCTRLs 32 1 3%

DSP 48eS 288 3 1%

•  Delay (ns) 24.29
(41Mhz)

•  Total Power
 700mW

Timing & Power

Device Utilization

The implementation compresses one sample every
clock cycle, yielding a speed of 41 MSample/sec

46!

JPL Compression IP integrated into ARTEMIS

JPL Fast lossless Compression IP is being implemented on the ML401
Virtex4 Xilinx prototype board.

JPL Fast Lossless Compression IP will be integrated into Advanced
Responsive Tactically-Effective Military Imaging Spectrometer
(ARTEMIS) payload which consists of a telescope, a high resolution
pushbroom imaging spectrometer, a high resolution imager and a real-time
processor.

47!

JPL Compression IP integrated into AVIRISng

JPL Fast lossless Compression IP is currently being implemented on the
National instrument PXI environment which includes a PXI chassis and
PXIe-7962R hardware with Xilinx Virtex-5 SX50T and two 256MBytes DRAMs

PXIe-7962R with Xilinx Virtex-5 SX50T PXI National Instrument Testbed

PXIe-7962R

HyspIRI
Instrument

PXI Chassis

48!

High Speed FL Implementations: FPGA

Real-time aircraft onboard FPGA compression
•  Implemented on a commercial Virtex 5

(equivalent to V5 Rad-hard device). Compresses
one sample every clock cycle, a speed of 40
MSample/sec with total power of 700 mW.

•  FL compressor implementation tested in National
Instruments PXI environment which includes a
PXIe-7962R board with Xilinx Virtex-5 SX50T
and two 256MBytes DRAMs. The system is
connected to the airborne AVIRIS-NG HSI
instrument and compresses HSI data in real-time
on the plane.

48

49!

Need few Slides with
Alpha Data Architecture

50!

FLEX FPGA Timing (estimated)
Assumptions:
•  32 frames/segment, 480×640 samples/frame, 16bits/sample
•  Transpose/Format 1 segment in 30ms

•  Compress 1 segment in 246ms (estimate based on FL)
•  Does not include parity check: Block read of 1 MB; Compute parity check per block; Send parity check

50

DMA
to

DDR
#1

 C

om
pute

S
tatistics

Transpose/
Form

at
B

IL/B
S

Q

to B
IP

Hardware Action

Software Action

Enable
Compression

Read DDR#2, Compress and Save in DDR#1

Compress 17MBytes done
Interrupt (17 segments)

Setup DMA
Compressed Segments

D
M

A
C

om
pressed

S
egm

ent

Enable
Transpose

Compress 300MB Image in < 15 sec

500ms

28ms

4325ms = 17x 246ms

4,325ms

30
ms

12,383ms

30
ms

…
.

Host
Read
SSD

2,000ms 28ms 500ms
500ms

30ms

Host
Decompress

2.5 sec

Setup Host to decompress

5,000ms

Compress 300MBytes done
Interrupt

Save
To

SSD
2.5 sec

D
M

A
C

om
pressed

S
egm

ent

Setup DMA
Compressed Segments

D
M

A
C

om
pressed

S
egm

ent

51!

FLEX Baseline: BIL/BSQ to BIP
Band 1

Band 2
Band 3

Band 479

Band 480
Band 481

Pixel 1
Pixel 2

Pixel 3
Pixel 638 Pixel 640

Pixel 639

Mapping into DDR Memory

Addr 0
Addr 1

Pixel

Addr 639
Addr 640

Pixel #1 of Band #1

Pixel #640 of Band #1
Pixel #1 of Band #2

Addr 307838
Addr 307839

Pixel #639of Band #481
Pixel #640 of Band #481

Each band can be divided into 5 Groups

Addr 0
Addr 1

Pixel

Addr 127
Addr 128

Pixel #1 of Band #1

Pixel #128 of Band #1
Pixel #129 of Band #1

Addr 638
Addr 639

Pixel #639 of Band #1
Pixel #640 of Band #1

Group 1

Addr 255
Addr 256

Pixel #256 of Band #1
Pixel #257 of Band #1

Group 2

Addr 511
Addr 512

Pixel #512 of Band #1
Pixel #513 of Band #1

Group 5

Group 4
Group 3

Group 1 Group 2 Group 3 Group 4 Group 5

Pixel 1 to 128 Pixel 129 to 256 Pixel 257 to 384 Pixel 385 to 512 Pixel 513 to 640

Band 1

Band 480

Transpose a Group at a time

Image is divided into 5 Groups

Pixel #2 of Band #1 Pixel #2 of Band #1

Pixel 1 to 8

128-bit (8x16)

Pixel 9 to 16

Pixel 113 to 120

Pixel 121 to 128

Burst 1
Burst 2

Burst 15
Burst 16

Register1[127:0] (pixel 1,…,pixel8)
Register2[127:0] (pixel 9,…,pixel16)

Register15[127:0] (pixel 113,…,pixel 120)
 Register16[127:0] (pixel 121,…,pixel 128)

Pixel 8
Pixel 9

Assumptions:
481 bands
640 samples
32 lines

51

52!

FLEX Baseline: BIL/BSQ to BIP

Read in image
- read in frame-by-frame from DDR memory for 32 frames
- read in group-by-group for 5 groups

Transpose the whole group before going to the next

one
- read in burst of 16 128-bit word, saved into 16 registers of

width 128 bits
- move data resided in these 16 registers to 16 internal

memory of size 3848x16
- total number of bursts to read in one group = 481
 481x(640/5)x16=481x16x128

Pixel 1 to 8

128-bit (8x16)

Pixel 9 to 16

Pixel 113 to 120

Pixel 121 to 128

Burst 1
Burst 2

Burst 15
Burst 16

Register1[127:0] (pixel 1,…,pixel8)
Register2[127:0] (pixel 9,…,pixel16)

Register15[127:0] (pixel 113,…,pixel 120)
 Register16[127:0] (pixel 121,…,pixel 128)

Pixel (16bit)
Memory 1

. . .

Register1[127:112], pixel 1, bd1

Register1[63:48],pixel5, bd1

Register1[15:0], pixel 8, bd1

Addr 0

Addr 481

Addr 962

Addr 1443

Addr 1924

Addr 2405

Addr 2886

Addr 3367

Register1[111:96] pixel 2, bd1

Register1[95:80],pixel3,bd1

Register1[79:64],pixel4, bd1

Register1[47:32],pixel 6, bd1

Register1[31:16],pixel7,bd1

Pixel (16bit)
Memory 16

Register16[127:112] pixel 121,bd1

Register16[63:48]

Register16[15:0],pixel128,bd1

Register16[111:96],pixel,122
bd1

Register16[95:80]

Register16[79:64]

Register16[47:32]

Register16[31:16]

Addr 0

Addr 481

Addr 962

Addr 1443

Addr 1924

Addr 2405

Addr 2886

Addr 3367

16 internal memory of total size 128pixels X 481bands X 16bits=61568 X16bits=7696 X 128bits
(each memory has data in multiple of 128 bits for Writing to DDR because we chosen 8 pixels) Write out transpose

-write out the whole group transposed to DDR memory
-write out each internal memory at a time
-write out in burst of 64 128-bit words (more efficient with DDR)
-data resided in the internal memory is in multiple of 128-bit
-total number of bursts to move out one Group of internal memory
 = 128pixels X 481bands X 16bits = 7696 X 128 bits
 = 7x64x128 + 1x33x128 (more realistic with burst of 64 in place of 7696)

Pixel (16bit)
Memory 2

Register2[127:112], pixel 9, bd1

Register1[63:48]

Register1[15:0],pixel16,bd1

Addr 0

Addr 481

Addr 962

Addr 1443

Addr 1924

Addr 2405

Addr 2886

Addr 3367

Register1[111:96],pixel10,bd1

Register1[95:80]

Register1[79:64]

Register1[47:32]

Register1[31:16]

Register2[111:96], pixel 9, bd2 Register2[111:96], pixel 121, bd2 Register1[127:112], pixel 1, bd2

Register16[15:0],pixel128,bd481

Memory of one Group (128 pixels 481 bands)

481

481*8

52

53!

FLEX Baseline: Predictor IP (from FL)

B1
(480X1)

B2
(480X1)

B3
(480X1)

BZ_Previous
(Previous Z)

(480X1)

External DDR2 DRAM buffer
(480 X641)

Z rows 640 and 641 are
duplicate.

BZ
Current Z
(483X1)

Zt
Zt-1
Zt-2
Zt-3

External
Ring bus

+

B4 = (y_cntr==1) ? B4<<2 : B4 B1
B3 B2

SUM

LMt -

-

-
LMt

LMt(B3<<2)

X

X

X

DIFF3=((B3<<2) - LMt)

DIFF2=((B2<<2) - LMt) DIFF1=((B1<<2) - LMt)

W3

W1

W2

R3=(W3*DIFF3)

R2=(W2*DIFF2)

R1=(W1*DIFF1)

DIFF4= ((Zt-1<<2) - LMt-1)

X
DIFF5=((Zt-2<<2) – LMt-2)

X

DIFF6=((Zt-3<<2) – LMt-3)

X

W4

W5

W6

R6=(W6*DIFF6)

R5=(W5*DIFF5)

R4=(W4*DIFF4)

BE
(Estimate)

(480X1)

Idealy The
calculations are
done within one
33 MHz clock
cycle

B2-Next
(480X1)

B1-Next
(480X1)

B-DDR
(480X1)

From
Page 2

BZ_Next
(480X1)

Estimate Array

Zt

Shift Z continuously into
DDR Buffer (B-DDR)
during each Z calculation.

Also, Shift Z continuously into
BZ_Previous Buffer during
each Z calculation

While processing the
next Z, upload contents
of B-DDR buffer, into the
external DDR2 DRAM.

Load the next Z from the
Ring bus into the
BZ_Next buffer while
previous Z is being
processed.

1- Before start of next Z
calculation, shift/load
B1_Next & B2_Next into
B1 & B2 buffers.

2- B2 contents are
shifted out and shifted
into B3 at the same
time.

3- Download the next
two upper Z rows into
B1_Next & B2_Next
buffer while the previous
Z is being processed.

From
Page 2

From
Page 2

From
Page 2

From
Page 2

From
Page 2

LMt= (x_cntr==1) ? SUM<<1 : SUM

LMt (Local Mean) is
equal to SUM/2 when
x_cntr is one. x_cntr is
the column counter and
it’s value is between 1-
641. x_cntr=1 is a corner
case (column=1).

LMt-3
LMt-2
LMt-1
LMt

LMt

EC

LMt << 14
(B2<<2)

(B1<<2)

+

EC >> 15

e

if(E<0) e=0
else if (E>((2**13)-3) e= (2**13-3)

else NOP

E

E>>1

IE

B2

Width requiremts
DIFFx = 15 bits
Wx = 17 bits
Rx = 32 bits
LMx = 14 bits
Bx = 14 bits
(Bx<<2) = 14 bits
LMt<<14= 28 bits
EC= 30 bits
e= 15 bits
E= 13 bits
IE= 12 bits

53

54!

FLEX Baseline: Predictor IP (from FL)

W1-B
(480X1)

wi numbers are
stored as 16-bits

2'complement
format.

wi

W1

To Page 1

IDLE

z_cntr=128 SET_Uyes
SET_U:
µ_st= µ_st+1
µ_st+1= Read from RAM block

IDLE:
µ_st = Read from RAM block
µ_st+1= Read from RAM block
w_shift= 14
s= (µ_shift - w_shift) + 1
z_cntr= 0

no

DIFF1_P= (Δ[12]==1) ? DIFF1 : (DIFF1*-1)

Note: Same logic is used to calculate W2-W6

DIFF1

DIFF1_P

DIFF1_P>> s

+ 1'b1

s

((DIFF1_P >> s) >> 1)

(DIFF1_P >> s) + 1'b1

+

Δ

WAIT

if(wi(temp)>17'h1ffff)
 wi+1= 17'h1ffff

else if(wi+1<-17'h1ffff)
 wi+1= -17'h1ffff

else
 wi+1= wi(temp)

wi(temp)

wi+1

Width spec’s
Δ= 15 bits
DIFF1_P= 15 bits
(DIFF1_P>>s)= 15 bits
((DIFF1_P>>s)+1'b1)= 15 bits
((DIFF1_P>>s)>>1)= 15 bits
wi= 17 bits
wi(temp) = 17 bits
wi+1= 17 bits

54

55!

FL	
 ImplementaAons:	
 FPGA	

ARTEMIS: Advanced Responsive Tactically-Effective Military Imaging Spectrometer
AVIRIS-NG: Airborne Visible/ Infrared Imaging Spectrometer Next Generation

PRISM: Portable Remote Imaging Spectrometer (PRISM) Coastal Ocean Sensor

*Excludes data transfer latency to and from SSD or hard drive

55	

References:
[1] N. Aranki, D. Keymeulen, M. Klimesh, A. Bakhshi, “Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space

Applications,” 2009 IEEE Aerospace Conference, 8 pages, March 7-14, 2009, Big Sky, MT, USA.
[2] N. Aranki, D. Keymeulen, M. Klimesh, A. Bakhshi, “Hardware Implementation of Lossless Adaptive and Scalable Hyperspectral Data

Compression for Space,” NASA/ESA Conference on Adaptive Hardware and Systems, pp. 315–322, July, 2009, San Francisco, CA, USA.
[3] A. Bakhshi, J. Kang, N. Aranki, D. Keymeulen, M. Klimesh, A. Kiely “Ecosystem Whitepaper: Implementation of Fast Lossless Hyperspectral

Data Compression on Virtex-5 FPGAs”, Xilinx on-line January Newsletter 2012.
[4] D. Keymeulen, N. Aranki, A. Bakhshi, H. Luong, C. Sartures, D. Dolman, “Airborne Demonstration of FPGA implementation of Fast Lossless

Hyperspectral Data Compression System,” NASA/ESA Conference on Adaptive Hardware and Systems, July, 2014, Leicester, UK
(submitted)

Demonstration Instrument Compressor

Name
Frame
size

Sampli
ng rate

(MS/
sec) Type

Sample
Size FPGA

Throughput
* (MS/sec)

Latency* (sec)
for 300MB

Image

Lab [1, 2] ARTEMIS Whiskbroom 12 bits Virtex4 33 9.09

Airborne [3] AVIRIS-NG 640X480 30 Pushbroom 13 bits Virtex5 40 3.75

Airborne [4] PRISM 640x285 30 Pushbroom 13 bits Virtex6 40 3.75

